Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available March 17, 2026
- 
            Free, publicly-accessible full text available January 27, 2026
- 
            Extreme outside temperatures resulting from heat waves, winter storms, and similar weather-related events trigger the Heating Ventilation and Air Conditioning (HVAC) systems, resulting in challenging, and potentially catastrophic, peak loads. As a consequence, such extreme outside temperatures put a strain on power grids and may thus lead to blackouts. To avoid the financial and personal repercussions of peak loads, demand response and power conservation represent promising solutions. Despite numerous efforts, it has been shown that the current state-of-the-art fails to consider (1) the complexity of human behavior when interacting with power conservation systems and (2) realistic home-level power dynamics. As a consequence, this leads to approaches that are (1) ineffective due to poor long-term user engagement and (2) too abstract to be used in real-world settings. In this article, we propose an auction theory-based power conservation framework for HVAC designed to address such individual human component through a three-fold approach:personalized preferencesof power conservation,models of realistic user behavior, andrealistic home-level power dynamics. In our framework, the System Operator sends Load Serving Entities (LSEs) the required power saving to tackle peak loads at the residential distribution feeder. Each LSE then prompts its users to providebids, i.e.,personalized preferencesof thermostat temperature adjustments, along with corresponding financial compensations. We employmodels of realistic user behaviorby means of online surveys to gather user bids and evaluate user interaction with such system.Realistic home-level power dynamicsare implemented by our machine learning-based Power Saving Predictions (PSP) algorithm, calculating the individual power savings in each user’s home resulting from such bids. A machine learning-based PSPs algorithm is executed by the users’ Smart Energy Management System (SEMS). PSP translates temperature adjustments into the corresponding power savings. Then, the SEMS sends bids back to the LSE, which selects the auction winners through an optimization problem called POwer Conservation Optimization (POCO). We prove that POCO is NP-hard, and thus provide two approaches to solve this problem. One approach is an optimal pseudo-polynomial algorithm called DYnamic programming Power Saving (DYPS), while the second is a heuristic polynomial time algorithm called Greedy Ranking AllocatioN (GRAN). EnergyPlus, the high-fidelity and gold-standard energy simulator funded by the U.S. Department of Energy, was used to validate our experiments, as well as to collect data to train PSP. We further evaluate the results of the auctions across several scenarios, showing that, as expected, DYPS finds the optimal solution, while GRAN outperforms recent state-of-the-art approaches.more » « less
- 
            Abstract Current eddy‐permitting and eddy‐resolving ocean models require dissipation to prevent a spurious accumulation of enstrophy at the grid scale. We introduce a new numerical scheme for momentum advection in large‐scale ocean models that involves upwinding through a weighted essentially non‐oscillatory (WENO) reconstruction. The new scheme provides implicit dissipation and thereby avoids the need for an additional explicit dissipation that may require calibration of unknown parameters. This approach uses the rotational, “vector invariant” formulation of the momentum advection operator that is widely employed by global general circulation models. A novel formulation of the WENO “smoothness indicators” is key for avoiding excessive numerical dissipation of kinetic energy and enstrophy at grid‐resolved scales. We test the new advection scheme against a standard approach that combines explicit dissipation with a dispersive discretization of the rotational advection operator in two scenarios: (a) two‐dimensional turbulence and (b) three‐dimensional baroclinic equilibration. In both cases, the solutions are stable, free from dispersive artifacts, and achieve increased “effective” resolution compared to other approaches commonly used in ocean models.more » « less
- 
            Peer-to-peer (P2P) energy trading is a decentralized energy market where local energy prosumers act as peers, trading energy among each other. Existing works in this area largely overlook the importance of user behavioral modeling, assume users’ sustained active participation, and full compliance in the decision-making process. To overcome these unrealistic assumptions, and their deleterious consequences, in this paper we propose an automated P2P energy trading framework that specifically considers the users’ perception by exploiting prospect theory . We formalize an optimization problem that maximizes the buyers’ perceived utility while matching energy production and demand. We prove that the problem is NP-hard and we propose a Differential Evolution-based Algorithm for Trading Energy ( DEbATE ) heuristic. Additionally, we propose two automated pricing solutions to improve the sellers’ profit based on reinforcement learning. The first solution, named Pricing mechanism with Q-learning and Risk-sensitivity ( PQR ), is based on Q-learning. Additionally, the given scalability issues of PQR , we propose a Deep Q-Network-based algorithm called ProDQN that exploits deep learning and a novel loss function rooted in prospect theory. Results based on real traces of energy consumption and production, as well as realistic prospect theory functions, show that our approaches achieve \(26\% \) higher perceived value for buyers and generate \(7\% \) more reward for sellers, compared to recent state-of-the-art approaches.more » « less
- 
            To meet the grand challenges of agricultural production including climate change impacts on crop production, a tight integration of social science, technology and agriculture experts including farmers are needed. Rapid advances in information and communication technology, precision agriculture and data analytics, are creating a perfect opportunity for the creation of smart connected farms (SCFs) and networked farmers. A network and coordinated farmer network provides unique advantages to farmers to enhance farm production and profitability, while tackling adverse climate events. The aim of this article is to provide a comprehensive overview of the state of the art in SCF including the advances in engineering, computer sciences, data sciences, social sciences and economics including data privacy, sharing and technology adoption. More specifically, we provide a comprehensive review of key components of SCFs and crucial elements necessary for its success. It includes, high-speed connections, sensors for data collection, and edge, fog and cloud computing along with innovative wireless technologies to enable cyber agricultural system. We also cover the topic of adoption of these technologies that involves important considerations around data analysis, privacy, and the sharing of data on platforms. From a social science and economics perspective, we examine the net-benefits and potential barriers to data-sharing within agricultural communities, and the behavioral factors influencing the adoption of SCF technologies. The focus of this review is to cover the state-of-the-art in smart connected farms with sufficient technological infrastructure; however, the information included herein can be utilized in geographies and farming systems that are witnessing digital technologies and want to develop SCF. Overall, taking a holistic view that spans technical, social and economic dimensions is key to understanding the impacts and future trajectory of Smart and Connected Farms.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
